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I. SUPPLEMENTARY FIGURES
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FIG. 1: (SUPPLEMENTARY FIGURE 1):
Quantifying the CDS network and estimating model parameters.

a Estimating p∗A and p∗B by observing intervals in which both networks have high activity (z ≥ 1
2 ). The region of

interest (above z = 1
2 , yellow line) is colored in green, with an example interval in red. b Dynamics of an individual

binary signal (Columbia), when the LA network is in the high activity state (zLA ≥ 1
2 ). c Matching the value of rd

for Corr = 0.61: correlation between the signals of two artificial networks with NA = NEU = 17 and NB = NLA = 8
nodes, for different values of rd, with other parameters fixed to the values from 〈k〉 = 5 row in Table 1.
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FIG. 2: (SUPPLEMENTARY FIGURE 2):
Analysis of network dynamics. a Two model (artificial) networks: Typical time evolution of activity. b–c

Activity density plot for two model networks reveals bimodality. d–g Fluctuation size peaks around z ≈ 0.5 for
model networks A (d) and B (e). A very similar pattern is found in real networks, EU (f) and LA (g).

II. SUPPLEMENTARY TABLES
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〈k〉 mfrac,EU mfrac,LA rEU rLA rd

3 0.55 0.43-0.49 0.78 0.87 0.16

4 0.55 0.43-0.49 0.79 0.87 0.14

5 0.57 0.43-0.49 0.79 0.87 0.13

6 0.57 0.43-0.49 0.79 0.87 0.11

7 0.57 0.43-0.49 0.79 0.87 0.10

TABLE I: (SUPPLEMENTARY TABLE 1):
Numerical estimates for the model parameters. Using this ”isolation method” we find limits on the numerical
values of the model parameters. These observation experiments allow us to gauge the strength of various effects in
real world systems. Here we confirm experimental accessibility of all of the model parameters. Note that values for

rd are rather small - this is expected and discussed in Methods.

III. SUPPLEMENTARY METHODS

Applying the model to the CDS network: Outline

There are two steps in applying our model to the system of binary CDS signals: 1) building the network (choosing
the rules for connecting the nodes), and 2) estimating model parameters (for internal failures: p∗A, p∗B , for external
failures: mfrac,A, mfrac,B , rA, rB , and for the interdependent interaction: rd) which are the core of our model. We
first make reasonable assumptions to model the structure of the links. We then show that we are capable of estimating
– based on the real records – all of the model parameters, by analyzing the situations in which one of these parameters
dominates the dynamics of the system.

Building the CDS network

Because the CDS system is a symbolic network, we have a certain freedom in modelling the links connecting the
countries. First, we make few assumptions. We assume that LA and EU countries are each represented by a network,
one with NLA = 8 nodes and the other with NEU = 17 nodes. We make a simplifying assumption that both have
the same average degree 〈k〉, which we do not fix: we vary it and investigate how it affects the estimates of dynamics
parameters. We assume a probabilistic rule for the links: the probability that there is a link between two nodes
within the same network is proportional to the correlation coefficient between the nodes taken from the correlation
matrix in Fig. 7c. Because the total number of links per network is fixed to 〈k〉N2 , and the links are probabilistic,
this results in many possible physical realizations for each network. We run simulations for a large sample of such
network realizations, with the same parameters, and average over the ensemble. During each simulation, the links do
not change. For the interdependent links we assume that every node in both the LA and EU networks has at least
one interdependent link, but some nodes can have more than one (because NLA 6= NEU it is not possible to have
one-to-one interdependency). Here we also apply the probabilistic rule: the probability that there is an interdependent
link between a node in EU and a node in LA is proportional to the associated matrix element in the correlation matrix
in Fig. 7c. There is a degree of freedom for the total number (L) of interdependent links between the two networks:
we do not fix this value but investigate how various quantities depend on the range of reasonable values of L.

Measuring and estimating model parameters

We find that it is possible to estimate from the data all the model parameters (internal p∗EU, p∗LA, external mfrac,EU,
mfrac,LA, rEU, rLA, interdependent rd), using quite simple and reasonable arguments. For each parameter, we identify
an observation experiment, a part of the dynamics, or a phenomenon, in which this particular parameter dominates.
This method enables us to effectively isolate individual parameters from the noise of many others. Below we outline
our procedure.

Estimating internal parameters (p∗EU, p∗LA): observing high activity states.

When both networks (EU and LA) are in the high activity phase, most of the failures are in fact internal failures.
In Fig. 6a for example, only about 3% of the failures observed during the high activity are external failures, because
there is a small chance for having a critically damaged neighborhood when z is very high. The contribution from
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interdependent failures when both networks have high activity is also rather small (of the order of (1 − z)rd, where
both (1− z) and rd are small). This allows us to almost directly estimate p∗EU and p∗LA from the real records, because
with only internal failures present we know that 〈z〉 = 1− p∗, so p∗EU = 1−〈zEU〉 and p∗LA = 1−〈zLA〉. By measuring
the average 〈zEU〉 and 〈zLA〉 for the times when both networks are highly active (such as when zEU > 1/2 and
zLA > 1/2 - an example of a time interval with that condition is colored in red in SuppFig. 1a ), we get estimates
p∗EU = 0.07± 0.01 and p∗LA = 0.11± 0.02 .

Alternative measurement of the internal parameters: micro-dynamics.

Alternatively, by observing the network on the micro level, i.e. observing the dynamics of individual nodes, it is
also possible to measure the average internal time of recovery, τEU and τLA, the crude failure rates pEU and pLA, and
to verify the previously measured p∗EU and p∗LA in an alternative way. Supplementary Figure 1b shows an example
of the Columbia signal (red) for a fraction of time between November 2006 and March 2007, when the activity of
both LA and EU networks was in the upper half (zEU > 1/2, zLA > 1/2). By measuring how long a country (node)
stays in the 0 state each time it fails under these conditions, and measuring how often it fails, we can estimate its
mean recovery time and the crude failure rate. We find the average values for the EU countries to be τEU = 13± 2,
pEU = (3.0 ± 0.5) ∗ 10−3 and p∗EU = 0.07 ± 0.01 (same as before). For LA countries we find the average values of
τLA = 9 ± 1, pLA = (7.6 ± 0.8) ∗ 10−3 and p∗LA = 0.11 ± 0.02 (same as before). Note that because for any nonlinear
function f and random variable x, the expectation E(f(x)) 6= f(E(x)), we have 〈p∗〉 6= 1− exp(−〈p〉〈τ〉).

Estimating the external parameters rEU and rLA: observing low activity states.

When both networks are in the low activity state (low values of z for EU and LA), external failures dominate.
Internal failures are present all the time, but they are known as we have already estimated the internal failure
parameters. To get a first estimate of rEU and rLA, we will neglect the interdependent failures temporarily, which
are also present but much weaker then external failures, and assume that the networks are weakly coupled (when we
later estimate the value of rd, we will get a small correction for the values of rEU and rLA). Also, luckily, for low
values of z, and if mfrac has a reasonable value (not too close to 0, and not too close to 1, which is always satisfied
by requiring the existence of two states per network - values of mfrac too close to 0 or 1 lead to single states), nearly
every node has a critically damaged neighborhood, so the dependence on mfrac vanishes and in this case the value of
〈z〉 is almost independent on the threshold mfrac. Indeed, our simulations confirm that the positions of the network
stable states (which in the thermodynamic limit coincide with 〈zlow〉 and 〈zhigh〉) do not depend much on mfrac. The
parameter mfrac however strongly determines the amount of time a network spends in the upper state, as opposed
to the lower state, but it has little influence on the position of those states. Because of the structure of function
F (1− z;mfrac) ≈ θ(1− z −mfrac) in Eq. (1) and (2), which behaves similarly to the Heaviside step function θ, the
influence of mfrac on the dynamics is strongest when 1− z(t) is close to mfrac. However this is rare when the system
is in the low or high activity states where it spends most of its time; medium values of z are usually achieved when the
system makes a transition which lasts shortly and does not contribute much to 〈z〉. Appreciating these simplifications,
the equation that connects the average fraction of failed nodes with the internal and external parameters becomes
1-〈zi〉 = pi

∗ + ri − pi∗ri (where i = {EU, LA}), with ri as the only unknown. By measuring 〈zi〉 in the low states
(zEU < 1/2 & zLA < 1/2) and already knowing pi

∗, we obtain estimates rEU = 0.81± 0.03 and rLA = 0.88± 0.03.

Estimating the thresholds mfrac,EU and mfrac,LA: visiting times

If we picture the two states per network (low and high) as a double well, then the parameter mfrac through
the function F (z;mfrac) controls the position and the shape of the potential barrier between the wells, and mfrac

dominates in determining the total fraction of time that each network spends in the upper, or lower, state. Higher
values of mfrac lead to the network spending more time in the low activity state, and vice versa. This is another useful
observation, which allows us to estimate the values of mfrac,EU and mfrac,LA from the real data. In Figure 6b, both
networks spend approximately half of their time in the high activity state or z ≥ 1/2 (precisely, EU - 53%, LA - 47%).
By simulating decoupled (rd = 0) EU and LA networks using previously measured parameters (p∗EU, p∗LA, τEU, τLA,
rEU, rLA), and requiring that the networks spend roughly 50% of time in each state, we are able to get first estimates
for the thresholds. We find that they slightly depend on the choice of 〈k〉, ranging from mfrac,EU = 0.57 ± 0.02 and
mfrac,LA = 0.50 ± 0.02 for 〈k〉 = 3, to mfrac,EU = 0.59 ± 0.02 and mfrac,LA = 0.50 ± 0.02 for 〈k〉 = 7 (〈k〉 is limited
by the number of nodes in the smaller network to a maximum of 7). Later, after we estimate rd, we will get small
corrections for mfrac,EU and mfrac,LA by simulating the networks with a nonzero value of rd.
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Estimating rd: correlation between networks EU and LA

The parameter rd represents the interaction strength of the interdependent nodes in the two networks. If rd were
zero, the two networks would have perfectly independent dynamics. On the other extreme, if rd = 1 we would expect
the two networks to have extremely correlated dynamics. Thus, studying the correlation between zEU(t) and zLA(t)
represents a natural way for estimating the interaction parameter rd. The correlation between the two real signals
in Fig. 6b has the value of 0.61. The idea for measuring rd is straightforward: By simulating an artificial interacting
network system, using our estimated numerical values for all other parameters (p∗EU, p∗LA, rEU, rLA, etc.), we can
determine which value of rd yields the target correlation of ≈ 0.61 between the two network activity signals. We find
that the value of rd that achieves this is affected somewhat by the structure of the network. Table 1, Column #6
shows the values of rd that we obtain for a range of values of 〈k〉 (average degree) and L = 30 interdependent links.
Thus our estimate for rd is in the range 0.10–0.16, and it is higher for smaller 〈k〉. A possible explanation is that
for small values of 〈k〉, nodes have fewer neighbors, intensifying the fluctuations in the rate of external failures (we
confirmed this in simulations), which increases the noise of z(t) for each network. This noise component intrinsic to
each network lowers the correlation between the two network signals, and a higher value of rd is needed to compensate.
Finally, by varying the total number of interdependent links L between 30 and 70, we find that the optimal rd is only
slightly affected by the value of L (as long as every node has at least one interdependent link): high values of L lower
the estimate for rd by approximately 0.01. If we relax the constraint that each node has at least one interdependent
link and allow for nodes without interdependent links, this increases the estimate for rd; some nodes are not engaged
in the interaction with the other network, which weakens the interaction between the two networks, and a higher rd
is needed to compensate. In this case an effective rd (a product of rd and the fraction of nodes having at least one
interdependent link) is approximately invariant with respect to L.

Once we have estimated rd, we can correct our initial estimates for rEU and rLA in the estimation method #3
above, where we had initially neglected the contribution from interdependent failures. Simulating the dynamics with
a nonzero rd also gives a correction to our initial estimates for mfrac,EU and mfrac,LA. Corrections for all parameters
are quite small, and the final values of rEU, rLA, mfrac,EU and mfrac,LA are shown in Table 1, which also shows that
the estimates slightly depend on 〈k〉. Supplementary Figure 1c presents an example of an actual measurement of
the correlation between the two artificial network signals as a function of rd, using numerical values from Table 1 for
〈k〉 = 5 and L = 30. The dashed orange line indicates the correlation target value of 0.61.

The estimate of rd and the corrections to other parameters complete our estimation for the model parameters using
the real CDS records. Supplementary Figure 2a shows a typical outcome of the artificial network simulation using
numerical values from Table 1, for the 〈k〉 = 5 row. Supplementary Figures 2b-c show the frequency distribution
histograms of the signals simulated with the 〈k〉 = 5 row data, but with much longer simulation time for better
statistics.

Similarity in fluctuation size structure

Our dynamical network model predicts that the typical fluctuation size of z(t) is not uniform for all values of z.
Supplementary Figures 2d and 2e show the average squared fluctuation 〈[z(t)− z(t− 1)]2〉 of the activity signal as a
function of z, for artificial networks A and B (NA = 17, NB = 8, for the parameters from Table 1, row 〈k〉 = 5). The
average fluctuation size shows a spike around z ≈ 1

2 . This is a reminiscent of a critical phenomenon, since z ≈ 1
2 is

the critical value of z below which the system is attracted to the lower single–network state, and above which it is
attracted to the higher state. This behavior is best visualized by imagining a double well, where the single-network
states (zlow and zhigh) correspond to two wells, separated by a barrier where the top of the barrier corresponds to
z ≈ 1

2 . This is especially clear in simulations with large networks (N > 10000) where, depending on the initial
condition, the system relaxes to either the higher state (if the initial z is above the critical value), or to the lower
state (if the initial z is below the critical value). We analyze the two real CDS networks (EU and LA) and find that
they also show a strong spike in average fluctuation size as a function of z (Supp. Fig. 2f-g), with the maximum at
approximately the same position as in their artificial network counterparts (z ≈ 1

2 ).


